您现在的位置:首页>互联网
技术创新助力AI更“懂医”
技术创新助力AI更“懂医”
对于医学领域的自然语言文献,例如医学教材、医学百科、临床病例、医学期刊、入院记录、检验报告等,这些文本中蕴含大量医学专业知识和医学术语。将实体识别技术与医学专业领域结合,利用机器读取医学文本,可以显著提高临床科研的效率和质量,并且可服务于下游子任务。但要想让机器“读懂”医学数据,核心在于让计算机在大量医学文本中准确的提取出关键信息,这就涉及到了命名实体识别、关系抽取等自然语言处理技术。
日前,腾讯天衍实验室获得了中文医学信息处理评测竞赛“中文医学文本命名实体识别”赛道冠军、“中文医学文本实体关系抽取”赛道亚军。
据了解,命名实体识别和关系抽取是信息抽取的两大核心任务。命名实体识别旨在抽取所需实体,以医疗领域为例,需要从非结构化医学文本中找出医学实体,如疾病、症状的过程;实体关系抽取则需要同时提取出医学实体及实体间的关系信息,即实体关系三元组。
在医疗领域,电子病历、生物医疗文献中存在大量的非结构化文本,采用信息抽取技术对医疗文本进行结构化,提取其中的疾病,症状,部位等实体,并对实体之间的关系进行判断,进而利用这些信息构建医疗知识图谱,不仅有利于人工智能更好地学到领域内的专业知识,更进一步提升导诊、辅诊、疾病预测等下游医疗任务的性能。
如在AI导诊场景中,当用户输入主诉,AI导诊小程序可以返回推荐科室。用户主诉中可能包含多个症状,不同症状的时间、部位、严重程度、病因诱因可能对应不同的疾病,通过关系抽取技术,可以捕捉到不同症状的具体属性,从而有助于更精准的疾病预测和科室推荐。
(责编:杨虞波罗、初梓瑞)
- 凡本网注明"来源:的所有作品,版权均属于中,转载请必须注明中,http://www.vbj.com.cn。违反者本网将追究相关法律责任。
- 本网转载并注明自其它来源的作品,目的在于传递更多信息,并不代表本网赞同其观点或证实其内容的真实性,不承担此类作品侵权行为的直接责任及连带责任。其他媒体、网站或个人从本网转载时,必须保留本网注明的作品来源,并自负版权等法律责任。
- 如涉及作品内容、版权等问题,请在作品发表之日起一周内与本网联系,否则视为放弃相关权利。